翻訳と辞書
Words near each other
・ Shear line (locksmithing)
・ Shear Madness
・ Shear mapping
・ Shear matrix
・ Shear modulus
・ Shear pin
・ Shear rate
・ Shear strength
・ Shear strength (discontinuity)
・ Shear strength (soil)
・ Shear strength test
・ Shear stress
・ Shear thinning
・ Shear velocity
・ Shear wall
Shear Wave Elasticity Imaging
・ Shear wave splitting
・ Shear waves
・ Shear zone
・ Shear-tailed grey tyrant
・ Sheard
・ Sheard's Mill Covered Bridge
・ Shearer
・ Shearer Schoolhouse Revival
・ Shearer Stack
・ Shearer West
・ Shearer's Bar
・ Shearer's Covered Bridge
・ Shearer's Foods
・ Shearer's inequality


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Shear Wave Elasticity Imaging : ウィキペディア英語版
Shear Wave Elasticity Imaging
In the mid-1990s a method named Shear Wave Elasticity Imaging (SWEI) for mapping tissue elasticity has been proposed.〔Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, and Emelianov SY, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 1998; 24: 1419-35.〕 The method is based on the use of acoustic radiation force of focused ultrasound to create shear waves in soft tissue. By measuring shear wave propagation parameters using ultrasound or MRI the tissue elasticity map can be created. Since the terms "Elasticity Imaging" and "Elastography" are synonyms, the original term SWEI is often changed to SWE, which commonly stands for Shear Wave Elastography. The shear wave speed is governed by the shear modulus of tissue which is highly sensitive to physiological and pathological structural changes of tissue. Variation of the shear modulus may be several orders of magnitude depending on the structure and state of tissue.〔Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, Buxton RB, Carson PL. Biophysical bases of elasticity imaging. In: Acoustical Imaging. Ed. Jones JP, Plenum Press, New York and London, 1995; 21: 223-240.〕〔Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol. 2013 Jul;39(7):1133-46. . Epub 2013 Apr 30. Review. PMID 23643056〕 This variation of the shear wave speed increases in many tissues in the presence of disease, e.g. the cancerous tissues can be significantly stiffer than normal tissue. For this reason, the possibility of using shear waves in new diagnostic methods and devices has been extensively investigated over the last two decades.
==Use in different elastographic methods==
Numerous new methods were developed most notable of which are Shear Wave Elasticity Imaging (SWEI), Acoustic Radiation Force Impulse Imaging (ARFI), Supersonic Shear Imaging (SSI), Shearwave Dispersion Ultrasound Vibrometry (SDUV), Harmonic Motion Imaging (HMI), Comb-push Ultrasound Shear Elastography (CUSE), and Spatially Modulated Ultrasound Radiation Force (SMURF).〔Nightingale KR, Palmeri ML, Nightingale RW, and Trahey GE, On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 2001; 110: 625-32.〕〔Bercoff J, Tanter M, and Fink M, Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004; 51: 396-409.〕〔Chen S, Urban MW, Pislaru C, Kinnick R, Zheng Y, Yao A, and Greenleaf JF, Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009; 56: 55-6.〕〔Vappou J, Maleke C, and Konofagou EE, Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys. Med. Biol. 2009; 54: 3579-3594.〕〔Song P, Zhao H, Manduca A, Urban M W, Greenleaf J F, and Chen S, "Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues," IEEE Trans. Med. Imaging, vol. 31, pp. 1821-1832, 2012.〕〔McAleavey S. A., Menon M., and Orszulak J., "Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force," Ultrason. Imaging, vol. 29, pp. 87-104, 2007.〕
These methods use different means to generate and measure the propagation of shear waves in tissue. The first elasticity imaging technologies based on the use of ARF were SWEI and ARFI. Principal difference between these technologies is that SWEI is based on the use of shear waves propagating sideways from the beam axis and creating elasticity map by measuring shear wave propagation parameters whereas ARFI gets elasticity information from the axis of the pushing beam and uses multiple pushes to create a two-dimensional stiffness map. No shear waves are used in ARFI and no axial elasticity assessment is involved in SWEI. Shear wave elasticity imaging has been developed into a clinical imaging modality over the last two decades and the radiation force-based methods are currently implemented in the commercial devices: SuperSonic Imagine Aixplorer, in the Siemens Acuson S2000 and S3000 as Virtual Touch Quantification, and in the General Electric Logiq E9.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Shear Wave Elasticity Imaging」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.